Oblicz a) 9:1/3 - 18/5 × 2i1/2b) 5i1/4 × (1i1/2 - 2/7)c)5/6 : 10 + 1i1/3 × 5/12d)5i1/3 : 4/9 :2 - 1i1/5 × 5/12… Natychmiastowa odpowiedź na Twoje pytanie. Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Oblicz. 2,3+0,17 4,53-2,8 1,8:1000 0,56+3,7 7-3,12 23:100 2,45-0,28 … Kalkulator może obliczyć ułamek operacji matematycznych na ułamkach i liczb mieszanych, takich jak dodawanie, odejmowanie, mnożenie, odejmowanie i zmniejszenie frakcji. W celu obliczenia kwoty, odejmowanie, mnożenie i dzielenie się z dwóch frakcji, wprowadzić licznik, mianownik, całkowitą część frakcji i wybierz operację z listy a) 3x - 3(2x - 2) = 3(x-2) 1-21 b) -5x2 + 2(1 − x) = -x - 5(r2 + 1) √49 Przykład 1. równe 4 % w skali roku. Oblicz, jaką kwotę pani Adamowska będzie musiała po roku zwrócić do banku. powinno być 2 1/2 więc to co odpowiedziałeś masz źle. dzięki ,dobra kto ierwszy ten lepszy. - kto rozwiąże tutaj w kom ten przykład odstaje naj. 1,6 - ( 1 3/5 + 4/5 x 0,625 ) : 2= Many translated example sentences containing "oblicz" – English-Polish dictionary and search engine for English translations. pvGdj2S. Oblicz średnią danych liczb. a) 8, 2, 1, 6, 4, 3 b) 3, 6, 9, 12, 4, 3, 0, 3 c) 7, 6, 5, 8, 9, 7, 7, 3, 7, 3, 4 d) 101, 102, 103, 104, 105, 106 Wpisz w polu obok wzór wyrazu szeregu liczbowegoCzy o taki szereg liczbowy Ci chodzi?$$$$Poczekaj kilka sekund na załadowanie kalkulatora... Jak używać kalkulatora szeregów liczbowych?Wpisz wzór wyrazu szeregu liczbowego używając symbolu \(n\) oraz symboli:dodawania +odejmowania -mnożenia *dzielenia /potęgowania ^Kalkulator (jeśli to możliwe) obliczy sumę szeregu nieskończonego oraz wyświetli komunikat o zbieżności więc z powodzeniem wykorzystać ten kalkulator do badania zbieżności wpisywania wyrazów szeregu liczbowego:1. wpisz1/n^2a otrzymasz szereg liczbowy\[\sum\limits_{n=1}^\infty \frac{1}{n^2}\]2. wpisz1/(n^2-1)a otrzymasz szereg liczbowy\[\sum\limits_{n=1}^\infty\frac{1}{n^2-1}\]3. wpiszn^2/2^na otrzymasz równanie zespolone\[\sum\limits_{n=1}^\infty \frac{n^2}{2^n}\]Nadal nie wiesz jak korzystać z kalkulatora? Zadaj pytanie w komentarzu poniżej. 1. Odległosc między szczebelkami drabinki na sali gimnastyczniej wynosi 1/4 m. Ile trzęba pokonać, aby wspiąć się na wysokosc 2 m? --- PRZYRODA --- Uczniowie piatej klasy planują wycieczke. Uzupelnij informacje dotyczące miejsc, które biorą pod uwagę, i zdecyduj, ktora propoztaka jest ciekawsza i dlaczego. Płociczno Niewielka miejscowość położona na pojezierzu ............. tuż nad jeziorem ......... Warto zobaczyć ............................. Szymonka Niewielka miejscowość położona na pojezierzu ......... tuż nad jeziorem .......... Warto zobaczyć ................ Uważam, że ciekawsza propozycją jest miejscowość ............. ponieważ ......... ---Znów przyroda :)--- Opisz dwa rezerwaty przyrody, które są polozone w pasie pojezierzy. Rezerwat ....... położono na pojeziorzu ...... Ochroną objęto ......... (Tutaj to samo co u góry tylko ma być inny rezerwat) NIE MUSICIE ODPOWIADAĆ NA WSZYSTKIE TYLKO NP. NA JEDNO ALE PAMIETAJCIE, ŻE WTEDY NIE DAM NAJLEPSZEGO! Answer Odpowiedzi Grupujesz po 2 liczby: (1-2)+(3-4)+(5-6)+(7-8)+...+(1497-1498)+(1499-1500) Wychodzi z tego 1500/2 par, czyli 750 par. Z każdej pary wychodzi wynik -1, czyli z 750 par wyjdzie -750 więc tak1-2+3-2jak widzisz liczby zapisane są tak jakby "parami"z każdej pary wychodzi -11-2=-13-4=-1ostatnia liczbą jest 15001500 : 2 = 750750 - tyle jest parczyli -1 musimy odjąć od siebie 750 razy-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1...-1-1-1-1-1 = - 750przynajmniej ja to tak widzę Uważasz, że znasz lepszą odpowiedź? lub aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Zadanie banalne ale rozwiązanie wyszło inne niż jest w odpowiedziach i chciałabym żeby ktoś sprawdził czy to ja popełniłam błąd czy w podręczniku jest. 1)Oblicz: \(\displaystyle{ ( \frac{1}{4} - \frac{ \frac{1}{4} + \frac{1}{9} }{ \frac{1}{9} }):( \frac{2}{3} + \frac{ \frac{7}{15} }{ \frac{2}{5} - \frac{1}{6} } )}\) Mnie wyszło \(\displaystyle{ -1 \frac{1}{8}}\) W podręczniku \(\displaystyle{ -8}\) Następne zadania wychodzą tak jak w podręczniku ale nie potrafię ich rozwiązać inaczej niż "łopatologicznie" czyli pisemnie mnożąc i mnożąc i mnożąc... Jak można sprytniej? 2)Oblicz iloczyn: \(\displaystyle{ (1+ \frac{2}{3})(1+ \frac{2}{5})(1+ \frac{2}{7})(1+ \frac{2}{9})(1+ \frac{2}{11})(1+ \frac{2}{13})(1+ \frac{2}{15})(1+ \frac{2}{17})(1+ \frac{2}{19})}\) 3)Oblicz sumę: \(\displaystyle{ (1+ \frac{1}{2} )+( \frac{1}{2}+ \frac{1}{3} )+( \frac{2}{3} + \frac{1}{4} )+( \frac{3}{4} + \frac{1}{5} )+( \frac{4}{5} + \frac{1}{6} )+( \frac{5}{6} + \frac{1}{7} )+( \frac{6}{7} + \frac{1}{8})+ \frac{7}{8}}\) 4)Oblicz: \(\displaystyle{ 2000 \frac{7}{13} \cdot 2001 \frac{7}{13} -1999 \frac{7}{13} \cdot 2002 \frac{7}{13}}\) Jeszcze jedno zadanie. Kompletnie nie mam pojęcia jak sobie z nim poradzić a wygląda całkiem niegroźnie: 5)Rozwiąż równanie: \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)- \frac{7}{15} =0,2}\) Dochodzę do tego momentu (czyli bardzo niedaleko): \(\displaystyle{ \frac{8}{3} :3(((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)= 2}\) i na tym się kończą pomysły... I ostatnie. Nie wiem jak zapisać mój tok rozumowania (nie oczekuję, że wejdziecie mi do głowy , ale mam nadzieję, że zapiszecie swój, bo ja to po prostu rozwiązałam tak na poczekaniu w głowie i w ostateczności wyszła mi sama odpowiedź bez rozwiązania): 6)Mama chce rozlać \(\displaystyle{ 13kg}\) miodu do słoików, w których mieści się po \(\displaystyle{ 1 \frac{1}{2} kg}\) i \(\displaystyle{ 2 \frac{1}{2}kg}\). Ile słoików każdej wielkości musi przygotować? Wyszło mi 4 duże i 2 małe ale nie potrafię zapisać jak to obliczyłam. Poproszę publiczność o pomoc Ostatnio zmieniony 14 kwie 2009, o 10:56 przez aricia, łącznie zmieniany 1 raz. Brzytwa Użytkownik Posty: 879 Rejestracja: 1 wrz 2007, o 13:33 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2 razy Pomógł: 221 razy Oblicz (ułamki) Post autor: Brzytwa » 14 kwie 2009, o 10:52 2) \(\displaystyle{ (1+ \frac{2}{3})(1+ \frac{2}{5})(1+ \frac{2}{7})(1+ \frac{2}{9})(1+ \frac{2}{11})(1+ \frac{2}{13})(1+ \frac{2}{15})(1+ \frac{2}{17})(1+ \frac{2}{19})=\frac{5}{3} \cdot \frac{7}{5} \cdot \frac{9}{7} \cdot \frac{11}{9} \cdot \frac{13}{11} \cdot \frac{15}{13} \cdot \frac{17}{15} \cdot \frac{19}{17} \cdot \frac{21}{19}=\frac{21}{3}=7}\) 3) \(\displaystyle{ (1+ \frac{1}{2} )+( \frac{1}{2}+ \frac{1}{3} )+( \frac{2}{3} + \frac{1}{4} )+( \frac{3}{4} + \frac{1}{5} )+( \frac{4}{5} + \frac{1}{6} )+( \frac{5}{6} + \frac{1}{7} )+( \frac{6}{7} + \frac{1}{8})+ \frac{7}{8}=1+ (\frac{1}{2} + \frac{1}{2})+ (\frac{1}{3} + \frac{2}{3}) + (\frac{1}{4} + \frac{3}{4} )+ (\frac{1}{5} + \frac{4}{5} )+ (\frac{1}{6} + \frac{5}{6}) + (\frac{1}{7} + \frac{6}{7}) + (\frac{1}{8}+ \frac{7}{8})=8}\) 4) \(\displaystyle{ 2000 \frac{7}{13} \cdot 2001 \frac{7}{13} -1999 \frac{7}{13} \cdot 2002 \frac{7}{13} = (1999 \frac{7}{13}+1)(2002 \frac{7}{13}-1)-1999 \frac{7}{13} \cdot 2002 \frac{7}{13} =1999 \frac{7}{13} \cdot 2002 \frac{7}{13} +2002 \frac{7}{13}-1999 \frac{7}{13}-1-1999 \frac{7}{13} \cdot 2002 \frac{7}{13}=3-1=2}\) 6) \(\displaystyle{ x}\)-liczba małych słoików, \(\displaystyle{ y}\)-liczba dużych słoików, \(\displaystyle{ x,y \in \mathbb{N}}\): \(\displaystyle{ 1,5x+2,5y=13}\) \(\displaystyle{ 3x+5y=26}\) 1)\(\displaystyle{ y=0}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=26}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 2)\(\displaystyle{ y=1}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=21}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x =7}\) 3)\(\displaystyle{ y=2}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=16}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 4)\(\displaystyle{ y=3}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=11}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 5)\(\displaystyle{ y=4}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=6}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x=2}\) 6)\(\displaystyle{ y=5}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=1}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) Tak więc mama może rozlać na \(\displaystyle{ 2}\) sposoby: \(\displaystyle{ 4}\) duże i \(\displaystyle{ 2}\) małe, oraz \(\displaystyle{ 1}\) duży i \(\displaystyle{ 7}\) małych. Ostatnio zmieniony 14 kwie 2009, o 11:11 przez Brzytwa, łącznie zmieniany 4 razy. aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 11:00 OK, dziękuję bardzo. Trzecie zadanie rozumiem i trochę mi wstyd, że sama na to nie wpadłam, ale nadal nie rozumiem jak Ty to tak skróciłeś do \(\displaystyle{ \frac{21}{3}}\) w drugim? edit. Czwarte i szóste też zrozumiałe. Teraz tylko chciałabym jeszcze wiedzieć co z 1), 5) i 2). Ostatnio zmieniony 14 kwie 2009, o 11:25 przez aricia, łącznie zmieniany 1 raz. Brzytwa Użytkownik Posty: 879 Rejestracja: 1 wrz 2007, o 13:33 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2 razy Pomógł: 221 razy Oblicz (ułamki) Post autor: Brzytwa » 14 kwie 2009, o 11:15 2) \(\displaystyle{ \frac{5}{3} \cdot \frac{7}{5} \cdot \frac{9}{7} \cdot \frac{11}{9} \cdot \frac{13}{11} \cdot \frac{15}{13} \cdot \frac{17}{15} \cdot \frac{19}{17} \cdot \frac{21}{19}=\frac{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21}{3\cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19}=\frac{(5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19) \cdot 21}{3 \cdot (5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19)}=\frac{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19}{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19} \cdot \frac{21}{3}=\frac{21}{3}=7}\) 5) \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)- \frac{7}{15} =0,2}\) \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{10}{15}}\) \(\displaystyle{ \frac{8}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{2}{3}}\) \(\displaystyle{ 1 ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{1}{4}}\) \(\displaystyle{ ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8=4}\) \(\displaystyle{ ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6}=1,2}\) \(\displaystyle{ (3,72-0,02x) \cdot \frac{10}{37}=\frac{36}{25}}\) \(\displaystyle{ 3,72-0,02x=\frac{36 \cdot 37}{25 \cdot 10}}\) \(\displaystyle{ 372-2x=\frac{36 \cdot 37 \cdot2 }{5}}\) \(\displaystyle{ 186-x=\frac{36 \cdot 37}{5}}\) \(\displaystyle{ 186-\frac{36 \cdot 37}{5}=x}\) \(\displaystyle{ \frac{930-1332}{5}=x}\) \(\displaystyle{ x=-\frac{402}{5}}\) \(\displaystyle{ x=-80,4}\) 1)W pierwszym rzeczywiście wychodzi \(\displaystyle{ -\frac{9}{8}}\) aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 11:51 Dziękuję Już wszystko rozumiem. W 5) powinno wyjść \(\displaystyle{ 1}\) ale już znalazłam, wkradł Ci się mały błąd: \(\displaystyle{ (3,72-0,02x) \cdot \frac{10}{37} =1}\) \(\displaystyle{ 3,72-0,02x=3,7}\) \(\displaystyle{ x=1}\) Dziękuję jeszcze raz i pozdrawiam. edit. Mam jeszcze trzy pytania. 1)Przedstaw w postaci ułamków zwykłych: \(\displaystyle{ ( 4^{-2} :5 ^{-1} ) \cdot [2 ^{-3} : (\frac{5}{2} ) ^{-2} ]}\) Mnie wyszło \(\displaystyle{ \frac{5}{512}}\) W odpowiedziach jest \(\displaystyle{ \frac{125}{512}}\). Mój błąd? 2)Oblicz: \(\displaystyle{ (- \frac{10}{17}) ^{5} \cdot (- \frac{51}{2} ) ^{5} \cdot (- \frac{1}{15} ) ^{5}}\) Nie mam pojęcia jak się do tego zabrać. 3)Jak przekształcić \(\displaystyle{ 2 ^{55}}\) w \(\displaystyle{ 32 ^{11}}\)? slaweu Użytkownik Posty: 84 Rejestracja: 3 lut 2009, o 17:21 Płeć: Mężczyzna Pomógł: 19 razy Oblicz (ułamki) Post autor: slaweu » 14 kwie 2009, o 14:10 1. \(\displaystyle{ ( 4^{-2} :5 ^{-1} ) \cdot [2 ^{-3} : ( \frac{5}{2} ) ^{-2} ]= (\frac{1}{16}*5)* (\frac{1}{8}* \frac{25}{4})= \frac{125}{512}}\) Więc twój błąd 2. Rozpisujemy ładnie wszystko, potęgi się skracają i wszystko gra \(\displaystyle{ (- \frac{10}{17}) ^{5} \cdot (- \frac{51}{2} ) ^{5} \cdot (- \frac{1}{15} ) ^{5}=(- \frac{2*5}{17} ) ^{5}*(- \frac{3*17}{2} ) ^{5}*(- \frac{1}{3*5} ) ^{5} =5 ^{5}*(- \frac{2}{17} ) ^{5}*3 ^{5} *(- \frac{17}{2} ) ^{5} *(- \frac{1}{3} ) ^{5}*( \frac{1}{5} ) ^{5}=5 ^{5}*(- \frac{2}{17} ) ^{5}*3 ^{5}*(-\frac{2}{17} ) ^{-5}*(-3) ^{-5}*5 ^{-5}=-1}\) 3. \(\displaystyle{ 32=2 ^{5}}\) resztę się domyśl aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 20:30 Już rozumiem. Dzięki bardzo

oblicz 2 1 6 1 4 9